If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+9=13t
We move all terms to the left:
t^2+9-(13t)=0
a = 1; b = -13; c = +9;
Δ = b2-4ac
Δ = -132-4·1·9
Δ = 133
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{133}}{2*1}=\frac{13-\sqrt{133}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{133}}{2*1}=\frac{13+\sqrt{133}}{2} $
| 5x-3=2x-6-3x | | 6x+8-25=5/4 | | 4x-1=×-9 | | 0.6m+6=4-0.2m | | .7771=15/x | | x=3/2=4 | | e=3/2=4 | | x/6=-3.8 | | l+3/2=4 | | 6000+9600+x+x+300/12=1675 | | .36p=2.52+.08 | | 9y-9-6y+5=0 | | 2x/3-9=-5 | | (y/4)^2=100 | | 1.75t—4.5=7.75 | | -20x4=0 | | 65=b(5) | | 65=b×5 | | 3x-9+12=8x | | 91=x*0.35x | | .03x-4=16 | | -3(6p+6)-2(2-14p)=3(7+3p) | | 3z/10=5 | | (5y+6)-(2+4y)=8 | | 12/13x+1/4=3/7-1/13x+3/7 | | 9-x=-2x-6 | | (6x+5)+(3x-5)=180 | | -16t^2-50t-36=0 | | (k/5)-6=2 | | -10+5x=-x+20 | | 2^(-x)=1.5 | | 2^-x=1.5 |